Title: “Easy as 1, 2, 3”

Targeted Grade: 6 -12
Lexile: 610L - 1000L

Author(s): TAI-0104

Time Expectancy: 60 - 90 minutes
Depth of Knowledge (DOK 1, 2, or 3): 3

Computer Science Learning Objectives: Student will:
e relate a simple, commonly-used task sequence to the functions carried out by and capabilities of
computers and the programs that run them.
e discriminate between the tasks that are intuitively human in nature and cannot be completed by
computers; evaluate criteria needed for a computer to perform tasks.
e edit and improve sequential tasks.

Concepts/Keywords: computer, input, output, sequence, algorithm, variable, loop

K-12 CSTA Identifier(s)

Standard(s) and Descriptive Statement(s)

1A-AP-08

1A-AP-09

1A-AP-10

1A-AP-11

1A-AP-12

1A-AP-14

-Model daily processes by creating and following algorithms
(sets of step-by-step instructions) to complete tasks.
(Subconcepts: Algorithms; Practice: 4.4)

-Model the way programs store and manipulate data by using
numbers or other symbols [graph coordinates] to represent
information. (Subconcepts: Variables; Practice: 4.4)

-Develop programs with sequences and simple loops, to
express ideas or address a problem. (Subconcepts: Control;
Practice: 5.2)

-Decompose (break down) the steps needed to solve a
problem into a precise sequence of instructions.
(Subconcepts: Modularity; Practice: 3.2)

-Develop plans that describe a program’s sequence of events,
goals, and expected outcomes. (Subconcepts:Program
Development; Practice: 5.1, 7.2)

-Debug (identify and fix) errors in an algorithm or program
that includes sequences and simple loops. (Subconcepts:
Program Development; Practice: 6.2)

K-12 Computer Framework(s)

Practice # and Statement(s)

P1. Fostering an Inclusive Computing
Culture

1. Include the unique perspective of others and reflect on one’s
own perspectives when designing and developing computational
products.




07

P3. Recognizing and Designing
Computational Problems

1. Identify complex, interdisciplinary, real-world problems that
can be solved computationally.

2. Decompose complex real-world problems into manageable
subproblems that could integrate existing solutions or procedures.

ISTE Standards

Standard(s)/Statement(s)

5. Computational Thinker: Students
develop and employ strategies for
understanding and solving problems in
ways that leverage the power of
technological methods to develop and
test solutions.

6. Creative Communicator: Students
communicate clearly and express
themselves creatively for a variety of
purposes using the platforms, tools,
styles, formats and digital media
appropriate to their goals.

7. Global Collaborator: Students use
digital tools to broaden their
perspectives and enrich their learning
by collaborating with others and
working effectively in teams locally
and globally.

5d. Students understand how automation works and use
algorithmic thinking to develop a sequence of steps to create and
test automated solutions.

6¢. Students communicate complex ideas clearly and effectively by
creating or using a variety of digital objects such as visualizations,
models or simulations.

7c. Students contribute constructively to project teams, assuming
various roles and responsibilities to work effectively toward a
common goal.

Additional Content Standard #(s)

Standard(s)/Statement(s)

NGSS:
MS-ETS1-4

CCSS-ELA:
L.7.3a. Knowledge of Language

RI1.7.3. Key ldeas and Details

Develop a model to generate data for iterative testing and
modification of proposed object, tool, or process such that an
optimal design can be achieved.

SEP: Developing and Using Models

DCI: ETS1.B: Developing Possible Solutions & ETS1.C: Optimizing
the Design Solution

Choose language that expresses ideas precisely and concisely,
recognizing and eliminating wordiness and redundancy.

Analyze the interactions between individuals, events, and ideas in
a text (e.g., how ideas influence individuals or events, or how
individuals influence ideas or events).

State (or International) Standard(s):
(TBD and identified by location of
instructor utilizing lesson).




07

References K-12 CSTA Standards: Computer Science Teachers
Association (2017). CSTA K—12 Computer Science
Standards, Revised 2017. Retrieved from
https://csteachers.ora/k12standards/.

K-12 Computer Science Framework:
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-C
omputer-Science-Framework.pdf

Next Generation Science Standards:
https://www.nextgenscience.org/standards/standards
Common Core State Standards for ELA:
http://www.thecorestandards.org/ELA-Literacy/

ISTE Standards:
https://www.iste.org/standards/for-students

Bloom’s Digital Taxonomy Verbs:
https://libquides.bc.edu/c.php?g=628962&p=4506921

Lesson Resources/Folder Access
(Link)

Overview: The overall purpose of “Easy as 1, 2, 3" is to allow students to model two things: 1) a computer
and how it functions, and 2) a programmer and how (ultimately) they are the ones controlling the tasks
performed by the computer. The lesson culminates with a short reading about historical inventions leading up
to and including modern computers. It provides an opportunity for students to explore the timeline of computer
development and programming throughout the world. It is important to note that computers were developed in
times of need (connecting historical engineering and programming events into the daily lives of humans) and
creative curiosity.

In Part | of this lesson, students are asked to write the steps needed to perform two familiar tasks: either
making a peanut butter and jelly sandwich, or brushing their teeth. (This is a very common introductory lesson
used to teach programming). The student task sequence for the first exercise is to be placed in the left side of
the table on page 1.

Once a good list of steps is compiled (by the whole group), the instructor follows the steps provided by the
class. This activity demonstrates the need for algorithms to be precise, unambiguous instructions that can be
followed literally by a computer. It is important that the steps are followed literally. Many times, this activity
shows that the instructor (who is acting like a computer) cannot perform the entire task; sometimes the task
cannot be performed at all because the instructor (aka computer) cannot access the materials and they are
not told how or where to access them, how to hold or use the materials in the way they are intended to be
used. Do not be surprised if the whole jar of peanut butter is placed (unopened) into the sandwich!

As the instructor is performing the sequence of tasks, students are asked to make notes that are intended to
be shared upon “completion”. Once the demonstration is concluded, students are then asked to write the task
sequence of the other exercise. This can be done outside of class if time is limited. Students will write the
second task sequence in the right-hand column of the table on page 1. It is important that student work for
Part | be placed in the table on page 1. This allows the instructor to compare the level of detail and assess
student learning from this task.


https://csteachers.org/k12standards/
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://www.nextgenscience.org/standards/standards
http://www.thecorestandards.org/ELA-Literacy/
https://www.iste.org/standards/for-students
https://libguides.bc.edu/c.php?g=628962&p=4506921

07

In Part Il of this lesson, students will continue with learning the need for detailed instructions. Students are
assigned as either an “INNIE” or an “OUTIE” to create simple drawings of animals in fifteen minutes. The
“INNIE” is given a card with the drawing, and they are asked to provide the instructions for their “OUTIE”
partners to draw without being shown the card. At the end of the fifteen minutes students switch roles and
create a new drawing. If time permits, the instructor can model how to provide instructions in the drawing of a
cartoon mouse using the X/Y coordinate plane. An overall goal from this activity is to allow students to
become more familiar with each other.

Extending Student Thinking:
e Part I: Emphasize that students revise and improve their step lists based on insight gained from seeing
a demonstration, modeling an iterative design process that programmers use. The students are
programmers even if they didn’t know it!
e Part Il: Provides practice creating and following algorithms orally, which reflects how programmers
verbally communicate instructions to coworkers when writing formal code. This oral facet of algorithm
development is an important skKill.

Rationale/Background: The purpose of this lesson is to model the tasks performed by a computer that are
directed by humans in lines of code. Variables, loops, start commands, logarithms, inputs and outputs are also
modeled. Students will become acquainted with other students and the overall “tone” of the classroom will be
set in this meeting.

Teacher (Required) Materials/Resources: Hard copy of this lesson for the instructor and each student sheet
(if teaching this lesson in person), Internet access, a means of meeting virtually (either by Google Meet, Zoom
[although Zoom is not preferred due to threat of hacking and inappropriate disruptions], or FaceTime
(depending on the size of the intended class). The instructor will need a means of projecting, reviewing and
recording the sequence of steps compiled by the whole class for making a peanut butter and jelly sandwich
and brushing your teeth.

“Easy As 1-2-3 Appendix 1”- Images for Innie/Outie Activity: This document contains images of a ladybug, a
grasshopper, a pig, a giraffe, an elephant, and a lizard.

“Easy as 1-2-3 Appendix 2- Internet-Free Supplement: This document is provided in the event that any
student does not have access to the Internet in their home environment and the “Extend Your Thinking”
portion is assigned to be completed as homework. This document can be copied with two pages per side.

Student Materials:

1. AniPad, laptop or desktop computer with drawing application [such as Notability], or paper, crayons
and markers.

2. If class is conducted online, Internet access. If the class is conducted online, breakout rooms (in
Google Meet) are ideal for Part 2.

3. Either hard copy or digital copy (that will allow writing on [such as Notability]) of “Student Sheet: Easy
as1,2,3

4. For Part Il: Either hard or digital copy of one of the images in the “Easy As 1-2-3 Appendix 1”
document. Cut or or crop images to provide to students.



https://drive.google.com/file/d/1AfZGKqCqRYaPBVfptP6GAQTH1cMvR8XJ/view?usp=sharing
https://drive.google.com/file/d/16A5m4JRq7yqofJxjiMbCNk-PbB18MQuI/view?usp=sharing
https://drive.google.com/file/d/1AfZGKqCqRYaPBVfptP6GAQTH1cMvR8XJ/view?usp=sharing

5. For “EXTEND YOUR THINKING: Digital Genesis Unveiled.”: Either hard copy or digital copy of
reading material. Students may follow directions to the link provided on their student sheet, or print a
hardcopy from “Easy as 1-2-3 Appendix 2.”

Guided Practice/lnstructor Procedures:
A) Introduction and Motivation: One of the main goals of this lesson is to provide an environment for the
students that is inclusive, nurturing and engaging. Students should become used to working with
partners and in collaborative groups that are changing throughout the lesson when possible.

An appropriate “ice-breaker” activity is encouraged prior to starting the lesson. It is ideal if the
“ice-breaker” activity allows for students to share their interest in computer science and why they are
taking this course. A comprehensive list of IceBreaker topics/ideas can be found here:
“Ice-Breaker-ldeas-For-Leaders” found at:
(http://blogs.shu.edu/greeklife/wp-content/blogs.dir/367/files/2013/08/Ice-Breaker-ldeas-for-Leaders.pd
).

The overall purpose of the lesson is to demonstrate and instill in students that computers can perform:
only the things they are told to do. Very specific instructions, and instructions that have two options
(“yes/no”, “this/that” and “either/or”). They should realize that task sequences can become very
lengthy, and the more detailed the instructions, the more accurately the computer will perform the task.

Students should also learn that task sequences can always be improved; codes and lines of code
must consistently be refined. Students are introduced to “variables” and the need to identify them
before running a task sequence, “loops” and the need for shortening code.

B) Lesson Body:
Part 1: The following steps are suggestions for the instructor that have proven to be good teaching

strategies:

1. Divide the class in half. Assign half of the class to write the steps of the peanut butter and jelly
sandwich, and half of the class to write the steps for brushing your teeth. (Note: peanut
allergies [of students AND instructors] should be considered prior to this lesson). Two
instructors are ideal in this lesson. One instructor will be responsible for the “peanut butter and
jelly group”, and the other instructor will be responsible for the “brushing teeth group”. Each
instructor will carry out step 2 (below).

2. Review the steps with the whole group and allow all students to contribute. Once the steps are
compiled, the instructor will then carry out the agreed-upon steps provided by the students.
This demonstration is meant to show flaws in student sequences, and all steps (or logarithms)
can always be improved. As students watch the instructor carry out the agreed-upon task
sequences, it is important for students to make notes where errors are made and how they can
be corrected. (This is debugging!).

3. Ask students to now write the task sequence for the other task. If time permits, this can be
done during the class meeting, or as an assignment prior to the next class. Steps written for the
other task should be more detailed and likely will be lengthier.


https://drive.google.com/file/d/16A5m4JRq7yqofJxjiMbCNk-PbB18MQuI/view?usp=sharing
http://blogs.shu.edu/greeklife/wp-content/blogs.dir/367/files/2013/08/Ice-Breaker-Ideas-for-Leaders.pdf
http://blogs.shu.edu/greeklife/wp-content/blogs.dir/367/files/2013/08/Ice-Breaker-Ideas-for-Leaders.pdf

Part 2: Students will be paired (or at most in groups of three). One student will be given a cartoon
drawing of an animal, and they will be asked to verbally give drawing instructions to the other student.
The student giving the instructions (the “INNIE”) cannot share specific, cluing details to the student
interpreting and making the drawing (the “OUTIE”). Students are given fifteen minutes to communicate
and make the drawing. If time permits, the students will switch roles and complete the task again. On
the second iteration, the instructor should assess improvement.

To take this lesson to another level, the instructor can revisit the task sequence steps that are
completed the second time. As a class, identify the parts of the sequence that represent the
identification of variables, introduction of any loops, and suggest students add functions into the task
sequence.

C) Lesson Closure: To conclude this lesson, ask students to read the timeline about computer history and
answer the reading comprehension questions. Students should be shown the “Computer Hope”
website and be encouraged to explore computer development events.

Student Misconceptions:
e Computers can "think for themselves" and perform tasks as intended rather than exactly as

programmed. Students have to learn that computers execute literal instructions.

e Computers will fix or compensate for imprecise or vague directions on their own. Students have to
provide detailed, unambiguous directions for a computer to follow successfully.

e Technology advances automatically, without human input. Exploring computer history and evolution
can help students realize computers are a recent invention, arising from a long series of discoveries,
needs and innovations.

Reading Selection: Please ask students to type in the following link,
https://www.computerhope.com/history/index.htm#timeline, or provide a hard copy of “Easy as 1-2-3 Appendix
2” if Internet is not available and it is expected that this portion is completed at home. Reading comprehension
questions for this reading selection are incorporated into the final page(s) of the student sheet.

Assessment:
A) Student assessment (by instructor):
Informal Assessment: Instructor will continuously monitor student progress, engage in
conversations about student work, and assist in answering questions about the
development of task sequences. It is important that the instructor gather as much
information possible about: student interests, student fluency using technology in
general, and student comfort in large groups and small groups.

Formal Assessment: Instructor will evaluate mastery of initial command sequencing by
reviewing student responses on their student sheet and when compiling the whole-group list of
steps in “Making a Peanut Butter and Jelly Sandwich” or “Brushing Your Teeth” tasks.



07

B) Instructor Self and Student Evaluation: The instructor is encouraged to complete the following as the
lesson is being carried out or reflected after the lesson is completed.

Three Strengths of This Lesson:
1)
2)
3)

Three Elements/Areas for Improvement:
1)
2)
3)

Identification of students (using initials, not names) who were not successful in meeting the
stated objectives:

How shortcomings will be addressed prior to starting next session:

Scope and Sequence: Next Lesson: “Scratch 0.0: Scratching the Surface”

Look-Ahead: In the next lesson, students will need access to the Internet, and either a digital or paper copy
(best if in color) of “Scratch 0.0: Scratching the Surface Using Scratch”. Prior to this lesson, determine if
another IceBreaker activity will be utilized, and obtain the needed supplies for that particular IceBreaker
activity. The instructor will also need white computer paper, pencils and potentially crayons or markers.



