Title: “HOPportunities”

Targeted Grade: 6-12
Lexile: 610L-800L

Author(s):

Time Expectancy: ~90 minutes
Depth of Knowledge (DOK 1, 2, or 3): 2-3

Computer Science Learning Objectives: Student will:
e demonstrate the ability to design and create new sprites with specific attributes, applying knowledge

of Scratch interface elements

e develop coding skills by constructing interactive programs for character communication and
animation, utilizing Scratch programming blocks effectively.

Concepts/Keywords: sprites, program, coding, animation, programming blocks, loops

K-12 CSTA Identifier(s)

Standard(s) and Descriptive Statement(s)

2-AP-10

2-AP-11

2-AP-12

1A-AP-14

1A-IC-18

-Use flowcharts and/or pseudocode to address complex
problems as algorithms. (Subconcept: Algorithms; Practice: 4.4,
4.1)

-Create clearly named variables that represent different data
types and perform operations on their values. (Subconcept:
Variables; Practice: 5.1, 5.2)

-Design and iteratively develop programs that combine
control structures, including nested loops and compound
conditionals. (Subconcept: Control; Practice: 5.1, 5.2)

-Debug (identify and fix) errors in an algorithm or program
that includes sequences and simple loops. (Subconcept:
Program Development; Practice: 6.2)

-Keep login information private, and log off of devices
appropriately. (Subconcepts: Safety Law & Ethics; Practice: 7.3)

K-12 Computer Framework(s)

Practice # and Statement(s)

P1. Fostering an Inclusive Computing
Culture

P4. Developing and Using
Abstractions

1. Include the unique perspective of others and reflect on one’s
own perspectives when designing and developing computational
products.

1. Extract common features from a set of interrelated processes
or phenomena.

3. Create modules and develop points of interaction that can
apply to multiple situations and reduce complexity.

07

P5. Creating Computational Artifacts

P6. Testing and Refining
Computational Artifacts

2. Create a computational artifact for practical intent, expression,
or to address a societal issue.

1. Systematically test computational artifacts by considering all
scenarios and using test cases.
2. Identify and fix errors using a systematic process.

3. Evaluate and refine a computational artifact multiple times to
enhance its performance, reliability, usability, and accessibility.

ISTE Standards

Standard(s)/Statement(s)

2. Digital Citizen: Students recognize
the rights, responsibilities and
opportunities of living, learning and
working in an interconnected digital
world, and they act and model in ways
that are safe, legal and ethical.

4. Innovative Designer: Students use a
variety of technologies within a design

process to identify and solve problems
by creating new, useful or imaginative

solutions.

5. Computational Thinker: Students
develop and employ strategies for
understanding and solving problems in
ways that leverage the power of
technological methods to develop and
test solutions.

2d. Students manage their personal data to maintain digital privacy
and security and are aware of data-collection technology used to
track their navigation online.

4c. Students develop, test and refine prototypes as part of a
cyclical design process.

4d. Students exhibit a tolerance for ambiguity, perseverance and
the capacity to work with open-ended problems.

5c¢. Students break problems into component parts, extract key
information, and develop descriptive models to understand
complex systems or facilitate problem-solving.

5d. Students understand how automation works and use
algorithmic thinking to develop a sequence of steps to create and
test automated solutions.

Additional Content Standard #(s)

Standard(s)/Statement(s)

NGSS:
MS-ETS1-3

MS-ETS1-4

Analyze data from tests to determine similarities and differences
among several design solutions to identify the best characteristics
of each that can be combined into a new solution to better meet
the criteria for success.

SEP:Developing Models

DCI: ETS1.C: Optimizing the Design Solution

Develop a model to generate data for iterative testing and
modification of a proposed object, tool, or process such that an
optimal design can be achieved.

SEP: Developing and Using Models

DCI: ETS1.B: Developing Possible Solutions

07

CCSS-ELA: a
RI1.6.1 Key Ideas and Details Cite textual evidence to support analysis of what the text says
explicitly as well as inferences drawn from the text

RI1.6.2 Key ldeas and Details Determine a central idea of a text and how it is conveyed through
particular details; provide a summary of the text distinct from
personal opinions or judgments.

State (or International) Standard(s):
(TBD and identified by location of
instructor utilizing lesson).

References K-12 CSTA Standards: Computer Science Teachers
Association (2017). CSTA K—12 Computer Science
Standards, Revised 2017. Retrieved from
https://csteachers.org/k12standards/.

K-12 Computer Science Framework:
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-C
omputer-Science-Framework.pdf

Next Generation Science Standards:
https://www.nextgenscience.org/standards/standards
Common Core State Standards for ELA:
http://www.thecorestandards.org/ELA-Literacy/

ISTE Standards:
https://www.iste.org/standards/for-students

Bloom’s Digital Taxonomy Verbs:
https://libguides.bc.edu/c.php?9=628962&p=4506921

Lesson Resources/Folder Access
(Link)

Overview: The objective of the “HOPportunities” lesson is to to advance students' proficiency in Scratch by
guiding them through the creation of an animated scenario involving two grasshopper sprites. Students will
progressively navigate two programming phases with their own computational challenges and space of digital
expression. The final section is another opportunity for students to gain insight into the evolution of computing
technology.

As they bring their characters to life and orchestrate a delightful tale of mentorship, students will solidify their
grasp of programming principles while expanding their creative and problem-solving skills. The
"HOPportunities" lesson offers an exciting opportunity for students to deepen their Scratch proficiency and
explore the captivating realm of animated storytelling.

In Part |, "Backyard Drama," students create two sprites and learn about backdrop creation for a new program
in Scratch. Students will use what they learned in the previous lesson about sprite manipulation to create an
animation of an elder grasshopper teaching a younger grasshopper to jump across flowers. The program will
enhance students’ understanding of the essential concepts of animation, coordinate manipulation, sequencing
and the significance of loops in coding.

https://csteachers.org/k12standards/
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf
https://www.nextgenscience.org/standards/standards
http://www.thecorestandards.org/ELA-Literacy/
https://www.iste.org/standards/for-students
https://libguides.bc.edu/c.php?g=628962&p=4506921

07

In Part Il, "Grasshoppers in Petal Pursuit," students will modify their code to create another grasshopper
interaction and animation. This introduces students to utilize previously created code in new ways, and
encourage them to use their creativity for storytelling. Students will demonstrate their achievement by
presenting a fully animated exchange between the grasshopper characters, showcasing their proficiency in
sequencing, debugging, and creative coding.

Lastly, in “EXTEND YOUR THINKING: Innovations’ Computing Roots”, students explore a brief timeline and
are asked to think critically about the early computer history in the 1930s and early 40s. Students will describe
innovative technologies foundational to current computing systems and abilities.

“‘HOPportunties” should allow students to grow confidence in their ability to write and manipulate code blocks
to create complete programs, They will begin to connect the importance of both structured computational
thinking and creativity for writing code. As students deepen their knowledge of computer history, they should
recongize the diverse needs technology has been created to meet, and even begin to imagine new
opportunities for which it can be used.

Rationale/Background: The purpose of this lesson is to build upon students' foundational knowledge of
Scratch programming acquired in previous lessons and guide them towards a more sophisticated level of
understanding. As students continue their journey in computational thinking and coding, the "HOPportunities"
lesson offers an engaging pathway to explore sprite animation and sequence control. With the establishment
of core coding concepts, such as variables, loops, and interactivity, students are poised to advance their
coding skills while undertaking an imaginative task.

The students are familiar with basic Scratch functions, sprite creation, and manipulation of code blocks. They
have already demonstrated their ability to navigate the Scratch interface and execute simple commands.
Leveraging this prior knowledge, the "HOPportunities" lesson challenges students to extend their capabilities
by animating a scenario that captures their creativity and curiosity. By catering to their existing knowledge and
leveraging their interests, the "HOPportunities" lesson ensures a relevant and meaningful learning experience
that supports student growth in both computational thinking and creative expression.

Teacher (Required) Materials/Resources: Hard copy or digital copy of this lesson for the instructor and each
student (if teaching this lesson in person), Internet access, a means of meeting virtually (either by Google

Meet, Zoom [although Zoom is not preferred due to threat of hacking and inappropriate disruptions], or
FaceTime (depending on the size of the intended class).

“‘HOPportunities Appendix 1”- Internet-Free Supplement: This document is provided in the event that any
student does not have access to the Internet in their home environment and the “Extend Your Thinking”
portion is assigned to be completed as homework.

Student Materials:
1. AniPad, laptop or desktop computer.
2. Internet access.
3. Either hard copy or digital copy (that will allow writing on [such as Notability]) of “Student Sheet:
HOPportunities”.

07

4. Scratch accounts created during a previous lesson.
5. Ability to screenshot or photograph their assembled block sequences for each tutorial category.
a. Encourage students to look up how to screenshot on their own devices, and assist when
necessary.
b. Example: Use the Google search engine to search “how to screenshot on Windows 10”
6. For “Extend Your Thinking: Innovations’ Computing Roots”: Either hard copy or digital copy of reading
material. Students may follow directions to the link provided on their student sheet, or print a hardcopy
from “HOPportunities Appendix 1.”

Guided Practice/lnstructor P jures:
A) Introduction and Motivation

1. Begin by engaging students in a brief discussion about their previous experience with Scratch
and sprite creation. Encourage them to share any unique characters they have designed and
any exciting interactions they have programmed.

2. Introduce the concept of storytelling through coding by mentioning that they will create an
animated dialogue between grasshopper characters.

3. Explain that this storytelling will involve coding dialogues, animations, and interactions to craft a
narrative.

B) Lesson Body
Part I: Backyard Drama

1. Instruct students to create a new project and name it appropriately, ensuring they understand
how to access the project's workspace.
2. Lead students in exploring the backdrop options and guide them in selecting the "Flowers"
backdrop.
3. Instruct students to create two grasshoppers as described in their Student Sheets.
4. Direct students to design code sequences for both grasshoppers as outlined in their Student
Sheets.
a. Encourage creativity in designing the interactions while ensuring the correct sequence
of actions.
5. High-level learners who may finish quickly can be paired with other students. Instruct them to
support the peer, answer questions, and debug errors.
6. Facilitate discussion about the coding process:
a. Prompt students to reflect on their coding process.
b. “What challenges did you encounter while coding the mentorship scenario?”
c. “Did you use loops? Why or why not?”
d. “Did you use grouping or ungrouping? Why or why not?”
e. “How did you use coordinates in this scenario?”
7. Assure that students have pasted a screenshot of their program’s code on their Student Sheet
before moving to the next section.

Part Il: Grasshoppers in Petal Pursuit
1. Instructs students that they will now modify their existing code to create the next scenario
described on their Student Sheet.

07

a. Again, encourage creativity in the design, suggesting students add any elements they
find interesting while ensuring the grasshoppers hop on all four flowers and dialogue is
included.

2. Assist students as needed in creating Shared Project Links and ensuring you can see them.
Initial Student Sheets.

3. Higher-level learns can be encouraged to swap their code from their previous program with
another student, and use that code to recreate this scenario or a new one they create.

4. Culminate the coding time by facilitating discussion about creating an animated program,
loops, modifying code. Ask questions such as:

a. “What was different about creating the first and second scenario?”

b. “Did you change how you used loops, grouping, or coordinates? Why or why not?”

c. Consider the broader implications of storytelling through coding: “How might this skill be
valuable in communicating ideas or narratives in various contexts?”

d. “Compare and contrast your coding experience in this lesson with your previous
experience in sprite creation. How have your skills changed, and what new concepts
have you mastered? What concepts are still difficult?”

C) Lesson Closure
1. Summarize the main concepts covered in the lesson: sequences, loops, dialogue, and sprite
interactions in creating engaging scenarios.
2. Ask students to reflect on how they have advanced their coding skills by creating today’s
animations.
a. “How did you apply our previous lesson today?”
b. “Are any coding concepts we’ve learned easier to understand?”
c. “What concepts are still difficult?”
i. Ask other students to explain any concepts their peers struggle with, only
offering clarification when needed.
3. Extend Your Thinking reading can be completed during the end of class if time allows, or be
assigned as homework. Discuss in class if possible.

Student Misconceptions:
e Student may still struggle with debugging, instead immediately asking for help or answers.
o Walk students through the steps of debugging, such as clearly identifying the problem, review
for typos or missing elements, and test small portions at a time.
e Coding is all about individual work, or code is only used for a single program.
o Explain that reusing one’s own code or others is common when coding. Just as loops can be
used for repetitive features, it's not always efficient to write brand new code for each program.
e Coding is only about logical or problem-solving.
o Creativity is often what gives code use! There would be not interactive websites without
creative design of code, just like creativity can make the grasshopper animations more
interesting.

Reading Selection: Direct students to the provided link or printed “HOPportunities Appendix 1” to read about
innovation in computer history. Instruct them complete the table on their Student Sheet about historical events
and the event’s impact on technological progress.

07

Assessment:
A) Student assessment (by instructor):

Informal Assessment: The instructor will engage in ongoing formative assessments by
actively interacting with students while they work on designing their grasshopper sprites and
coding activities within the Scratch platform. The instructor will observe students' level of
engagement, their problem-solving strategies, and their interaction with the Scratch interface.
The instructor can ask open-ended questions to probe their understanding of key concepts,
such as their rationale for choosing specific code blocks or their methods for animating the
sprite's movements. This real-time feedback will provide insights into students' grasp of the
material and their ability to apply coding techniques effectively. Additionally, the instructor will
review the final grasshopper animation to assess students' mastery of Scratch.

Formal Assessment: To formally assess students' comprehension of computational concepts
and coding practices, the instructor will guide them in written reflections or class discussions.
Students will be asked to elaborate on the role and significance of code blocks in programming,
emphasizing how sequences of code contribute to sprite movements and interactions. This
assessment will gauge their grasp of foundational coding principles and their ability to articulate
these concepts effectively. Additionally, students will share insights from their exploration of the
Extend Your Thinking section regarding the historical significance of technological
advancements on society. Through these assessments, the instructor can ascertain students'
depth of understanding and critical thinking skills in the context of coding and computer history.

B) Instructor Self and Student Evaluation: The instructor is encouraged to complete the following as the
lesson is being carried out or reflected after the lesson is completed.

Three Strengths of This Lesson:
1)
2)
3)

Three Elements/Areas for Improvement:
1)
2)
3)

Identification of students (using initials, not names) who were not successful in meeting the
stated objectives:

How shortcomings will be addressed prior to starting next session:

07

Scope and Sequence: Prior Assignment: “\GRASSHOPPER”
Next Lesson: “Jitterbugs”

Look-Ahead: In the next lesson, "Jitterbugs," students will again need access to the Internet and their Scratch
accounts. They will continue to explore the use of coding as a communication tool across many disciplines
and uses.

